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ABSTRACT 

Modern crowd‐monitoring relies heavily on fixed CCTV networks and manual video analysis, which 

are costly, privacy‐intrusive, and prone to human error and blind spots. Rule‐based or simple vision 

analytics further struggle with occlusion, lighting variations, and lack adaptability across 

environments. To address these challenges, our work leverages ubiquitous smartphone inertial sensors 

(accelerometer and gyroscope) to detect and classify six human activities via machine learning. This 

sensor‐driven approach offers a low-cost, privacy-preserving, and scalable solution for real-time 

anomaly detection in diverse public and private settings. This research presents a complete pipeline 

for monitoring crowd behaviour via anomaly detection on smartphone sensor data. We employ a 

public Human Activity Recognition dataset with 7,352 samples and 561 time‐ and frequency‐domain 

features (accelerometer/gyroscope statistics), labeled across six activities (standing, sitting, laying, 

walking, walking_upstairs, walking_downstairs). A Tkinter GUI guides users through data upload, 

preprocessing (missing-value imputation, label encoding, visualization), model training, evaluation, 

and prediction. Two classifiers are compared: a single Decision Tree (DTC) and an ensemble Random 

Forest (RFC). The RFC attains a macro-averaged precision of 98.23%, recall of 98.24%, F1-score of 

98.23%, and overall accuracy of 98.16%, versus the DTC’s precision/recall/F1 around 94% and 

accuracy of 95%—an absolute accuracy gain of ~3.2 points and a 4-point lift in F1. ROC curves and 

confusion matrices confirm the RFC’s superior discriminative power and reliability in both positive 

and negative predictions. Finally, the trained RFC can label new sensor recordings in real time via the 

same GUI. 

Keywords: Anomaly Detection, Sensor Data, Decision Tree Classifier (DTC), Random 

ForestClassifer (RFC), Crowd Monitoring. 

1.INTRODUCTION 

Due to expeditious technological growth and pervasiveness, wearable sensing have become an 

integral part of many research areas such as, human activity recognition (HAR) [1]. HAR is an 

essential component in various application domains such as, smart healthcare [2], surveillance [3], 

human–computer interaction [4], and many more. Initially, videos were used in identifying anomalies 

in human action, especially in the surveillance domain [5]. However, smartphone sensors provide a 

infrastructure-free and privacy preserving approach to HAR. The distinct static or moving posture can 

be uniquely identified using self-contained inertial sensors, namely, accelerometer or a combination of 

accelerometer, gyroscope, and/or magnetometer. These sensors are commercially available with 

smartphones, smart watches, and other wearable devices [6].Since most citizens carry a smartphone 

nowadays, cost-effective ubiquitous systems could be designed for HAR based on smartphone 

sensing. Individual activity generates unique time-series signal pattern, although the extent of 
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distinguishing characteristics varies depending on the nature of activity [7]. Dynamic activities (walk, 

run, jump etc.) produce distinguishable patterns due to separate rhythm of acceleration. In case of 

different static activities (stand, sit, lie etc.), the difference in time series signal patterns is minor. Lack 

of sufficient movements causes the acceleration information along the time scale insufficient to 

identify the static activities. Better analysis of static activities is possible using two-dimensional data, 

that is inter axis patterns could be meaningful here. 

2.LITERATURE SURVEY  

Machine learning based HAR systems [8] require these features to be extracted that necessitate 

specific domain knowledge about the set of activities to be recognized and hence, makes such systems 

difficult to customize for various applications. Existing research works on HAR as in [9, 10, 11] are 

mainly focused on the recognition of a given bunch of activities, and feature extraction and fusion 

[12, 13] for different sensors. A few works could be found that study the challenging effect of 

different sensor calibration of smartphone configurations and the several usage behaviors as in [14]. 

These works mostly apply an ensemble of supervised classifiers. Though a few recent works on 

smartphone-based HAR could be observed utilizing deep learning techniques, such as Long short-

term memory (LSTM) as in [15, 16] we could not find any comprehensive deep learning framework 

for smartphone sensing that also handles the important challenge of different smartphone 

configurations and usage behavior. 

Few works [17] could be found where activity continuously monitored with other factors like heart 

rate, temperature to identify several diseases. The HAR works that focused on user, position, and/or 

device independence have also been discussed. During the last decade, smartphones have become a 

part of our daily life, and this fact was reflected in HAR research works too. An online activity 

recognition system for the Android platform was proposed in [18]. Data was collected with preferred 

window size and the training set for each of the activities was reduced into smaller subsets using 

clustered k-nearest neighbor (kNN). However, online activity recognition with kNN [19] is practically 

a time-consuming process as it requires high computational complexity for the lazy learning nature. 

Activities can be recognized in phases, as proposed in the two-layer approach [20]. In the first layer, 

similar activities are classified into separate groups like, static and dynamic. Then, different strategies 

and suitable classifiers were used according to the type of activities of each group. For dynamic 

activities, a position-assisted classifier was proposed as the position and orientation of smartphones 

highly affect the time-series signal pattern of dynamic activities. Static activities were identified with 

the help of transition recognition like sit-to-stand or vice-versa. Another similar approach was 

proposed in [21], the group-based context-aware HAR (GCHAR) approach, which outperforms single 

ML classifiers when evaluated on the UCI HAR dataset. 

Recognizing transition and sequence of activities were the main objective in [22], using a smartphone-

based Multi-Instance Multi-Label (MIML) ensemble model considering kNN distance metrics. 

Transition among two or three consecutive activities was successfully recognized in this work. Hand-

gesture activities can also be recognized with higher accuracy, when smartphone is used along with 

wrist-worn sensors, as shown in [23]. The main challenge was to recognize less-repetitive activities 

like smoking, talking, eating, etc. with smaller window sizes. The system was evaluated with seven 

different window sizes considering thirteen activities to analyze this matter. Naive Bayes, decision 

tree, and kNN were used for classification.Multiple features increase the time complexity of any HAR 

system. Identifying optimal feature set and combine with machine learning model is a crucial task for 



www.ijbar.org 
ISSN2249-3352(P)2278-0505(E) 

CosmosImpactFactor-5.86 

 

 

 

 

IndexinCosmos 

APR2025, Volume 15,ISSUE 2 

UGCApprovedJournal 

 
 
  

 

Page | 777 
 
 
 

building any system. The author in [24] has selected a few meta-heuristic techniques for identifying 

relevant and optimal features from the overall feature space. The wolf search, elephant search and 

cuckoo search are combined with the correlation-based feature selection to perform as filter for 

identifying relevant feature set. The overall performance has increased with feature subsets compared 

to whole feature set. In [25], Fast Fourier Transform (FFT) and Discrete Cosine Transform (DCT) are 

used to calculate the frequency component of time domain signals. The Welch’s power spectral 

density algorithm has applied to extract the detailed distribution of the power for different frequency 

related components of entire accelerometer signal. Breaking the chain of supervised learning, the 

unsupervised learning-based HAR method was proposed in [26]. The activities were recognized by 

applying the clustering method on smartphone data using the Jaccard distance measure. Applying C-

index and FM-index before and after clustering respectively, researchers explained how this 

uncommon distance measurement can outperform popular Euclidean distance-based HAR 

approaches. 

Like smartphones, smartwatches are also being popular day by day, making their usage obvious in 

HAR research works.In [27], authors proposed a new HAR approach for detecting sitting positions. 

Office Workers Syndrome (OWS), that is having pain in the body due to sitting in a fixed position for 

a long time, is a common problem among numerous working people. The system identifies six 

different activities including sitting and computing approximate the time period of sitting using the 

accelerometer and gyroscope data of the smartwatch using an ensemble learning-based technique. 

Support Vector Machine (SVM), Decision Tree (DT) and Random Forest (RF) are used to identify 

abnormal activities in [28]. The RF algorithm is more efficient for identifying the activity like 

climbing up and down as there are more spikes and changes of the features. The author in [29], 

explore the XGBoost algorithm for HAR. Examine the impact of the gyroscope on HAR results and 

compared results of existing models Decision Tree, SVM, Multilayer Perceptron, Naive Bayes, KNN, 

Random Forest. More training data improves the accuracy of each activity in [30], audio sensor of the 

Samsung Gear S3 smartwatch was included, along with an accelerometer and gyroscope for 

recognizing three basketball activities: handling, passing, and dribbling. Approximately 20% 

improvement in performance was observed after involving the audio sensor. 

3.PROPOSED METHODOLOGY 

This researchautomatically detects and monitor ―anomalous‖ crowd behaviors (sitting, standing, 

walking, walking upstairs/downstairs, laying) using only the accelerometer/gyroscope data captured 

by a smartphone carried by each person. In addition, it demonstrates a complete ―data → 

model → deploy‖ cycle: from raw smartphone signals through preprocessing, model development, 

evaluation, and finally an end-user application that both trains and applies the anomaly-detection 

classifiers. 
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Fig. 1: Proposed system architecture of crowd behaviour monitoring system. 

Here’s a high‐level overview of the entire system and workflow: 

Step-1: Data 

The system uses a public ―Human Activity Recognition‖ dataset that contains 7352 samples. Each 

sample includes 561 normalized sensor-feature columns, representing time and frequency domain 

statistics (e.g., tBodyAccmean() X, tGravityAccstd() Y), along with an ―Activity‖ label. During 

preprocessing, missing values are filled with zero, categorical labels are encoded numerically, and the 

data is split into 80% for training and 20% for testing. 

Step-2: Models 

Two models are implemented for activity recognition. The first is a Decision Tree Classifier (DTC), a 

single-tree model that captures hierarchical splits based on sensor features. The second is a Random 

Forest Classifier (RFC), which consists of an ensemble of randomized trees, offering improved 

stability and accuracy. 

Step-3: Evaluation Metrics 

The models are evaluated using several metrics. Positive metrics include precision, recall, F1 score, 

and accuracy (both macro averaged and per class). Negative metrics include confusion matrices, 

true/false negative rates, and Negative Predictive Value. Additionally, ROC curves are plotted for each 

model to compare the trade-offs between true positive and false positive rates. 

Step-4: User Interface 

A graphical user interface (GUI) is built using Tkinter. The application guides the user through six 

interactive steps: 

1. Upload the dataset (CSV format). 

2. Preprocess and normalize the data, which includes filling missing values, encoding labels, and 

visualizing class distributions. 

3. Train the Random Forest Classifier. 
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4. Train the Decision Tree Classifier. 

5. Predict activities using new sensor data files. 

6. Plot a comparison chart displaying performance metrics. 

A scrollable text area in the GUI logs the outputs and metrics for each operation. Separate Matplotlib 

windows are used to display the count plot, ROC curves, and performance comparison bar chart. 

Step-5: Key Findings 

The Random Forest Classifier consistently outperforms the Decision Tree Classifier across all positive 

metrics including precision, recall, F1 score, and accuracy, as well as in terms of the reliability of 

negative predictions. The GUI enables non-programmers to interact with the entire machine learning 

pipeline easily by uploading raw data, clicking buttons, and immediately viewing model performance 

and predictions. 

3.1 Random Forest Classifier  

A Random Forest builds an ensemble of independently trained Decision Trees (as shown in Fig. 3), 

each on a bootstrap sample of the data and considering only a random subset of features at each split. 

By aggregating their predictions through majority voting, it dramatically reduces the variance and 

overfitting typical of single trees, yielding high accuracy and robustness to noisy or highly correlated 

features. 
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Fig. 2: Workflow of proposed crowd behaviour monitoring using anomaly detection from smart phone 

sensor data. 

Explanation: 

1. Bootstrap Sampling: Each tree is trained on a random sample (with replacement) of the 

original dataset. 

2. Feature Subspace: For each split in a tree, a random subset of features is considered, adding 

decorrelation between trees. 

3. Tree Ensemble: Multiple Decision Trees independently learn their splits on their bootstrap 

samples and chosen feature sets. 

4. Voting: When predicting, each tree casts a vote for its predicted class; the Random Forest 

outputs the class with the most votes, reducing variance and improving generalization over a 

single tree. 

 

Fig. 3: Internal workflow of RFC model. 

4.RESULTS AND DISCUSSION 

4.1 Dataset description 

This is a fully‐numeric, normalized dataset of smartphone sensor readings (time and frequency 

domain) for human activities, with 7352 samples and 561 features—ready for training classifiers after 

encoding the activity labels. 

Here’s an overview of the uploaded Train_Data.csv: 
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1. Size & Rows: 7352 observations (rows). No missing values in any column. 

2. Features (Columns): There are 561 numeric sensor-feature columns, each named following 

the format <signal>-<statistic>()-<axis>. For example, tBodyAcc-mean()-X represents the 

mean of body acceleration in the X direction, while tBodyAcc-std()-Y represents the standard 

deviation of body acceleration in the Y direction. Similar naming conventions apply to body 

and gravity signals, gyroscope data, and frequency-domain transforms. Additionally, there is 

one target column, which is not shown in the excerpt above, that indicates the activity label 

(e.g., walking, sitting, laying). 

3. Data Types & Completeness: All sensor‐feature columns are float64.Every column has 7352 

non-null values—no missing data. 

4. Descriptive Statistics: Many features range between –1.0 and +1.0, reflecting normalized 

sensor readings.Means for acceleration signals hover near zero (e.g. ~0.27 on X axis, –0.01 on 

Y, –0.11 on Z).Standard deviations exhibit wide spans (e.g. some features span –1.0 to 

+1.0).The quartile splits (25th/50th/75th percentiles) confirm roughly symmetric, normalized 

distributions for most features. 

4.2 Results description 

Fig. 4displays the distribution of activity labels in the uploaded dataset. Each bar corresponds to one 

activity category (e.g. walking, sitting, laying, walking_upstairs, walking_downstairs, standing), and 

the bar heights show how many samples belong to each. The exact counts are annotated above each 

bar, revealing any class‐imbalance that could affect model training. 

 

Fig. 4: Anomaly category versus number of samples. 



www.ijbar.org 
ISSN2249-3352(P)2278-0505(E) 

CosmosImpactFactor-5.86 

 

 

 

 

IndexinCosmos 

APR2025, Volume 15,ISSUE 2 

UGCApprovedJournal 

 
 
  

 

Page | 782 
 
 
 

 

(a)       (b) 

Fig. 5: ROC curve obtained using (a) DTC model. (b) RFC model. 

Fig. 5 demonstrate two ROC plots side-by-side: 

(a) Decision Tree Classifier (DTC) – The dashed orange line shows the random‐guess baseline; the 

solid line shows the tree’s true positive rate vs. false positive rate as the discrimination threshold 

varies. 

(b) Random Forest Classifier (RFC) – Similarly plotted, typically hugging the top-left corner more 

closely, indicating stronger separability and higher AUC. 

These ROC curves visually compare each model’s ability to distinguish between normal vs. 

anomalous activities across all threshold settings.The goal is to categorize and list each sample with 

its respective detected posture, such as "laying," "sitting," "standing," or "walking," within the 

sequence. Here’s a concise summary of each test input vector and its detected ―anomaly‖ posture 

represented in Table.1: 

1. Samples 1–3 all triggered the model’s ―laying‖ anomaly profile. 

2. Samples 4–6 fell into the ―sitting‖ anomaly. 

3. Samples 7–10 keyed as ―standing.‖ 

4. Samples 11–13 were flagged as ―walking.‖ 

Sample Detected Posture 

1 laying 

2 laying 

3 laying 

4 sitting 

5 sitting 

6 sitting 

7 standing 
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8 standing 

9 standing 

10 standing 

11 walking 

12 walking 

13 walking 

 

Table. 1: Posture predictions on test data. 

Table. 2: Performance evaluation of DTC, and RFC models. 

Model Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

Random Forest (RFC) 98.23 98.24 98.23 98.16 

Decision Tree (DTC) 95.00 95.00 95.00 95.00 

 

Table. 2 summarizes as follows: 

1. Precision: RFC’s 98.23% vs. DTC’s 95.00% means that of all instances each model 

labeled as positive, RFC was correct about 3.2 points more often—fewer false positives 

overall. 

2. Recall: RFC at 98.24% vs. DTC at 95.00% shows RFC also captures more of the true 

positives, missing far fewer actual cases. 

3. F1-Score: As the harmonic mean of precision and recall, RFC’s 98.23% vs. DTC’s 

95.00% confirms a consistently stronger balance between precision and recall. 

4. Accuracy: RFC’s accuracy is about 3 points higher, meaning it simply makes fewer total 

classification errors across the entire dataset. 

5.CONCLUSION 

Through end‑to‑end integration of scikit‑learn classifiers into a user‑friendly Tkinter application, this 

work demonstrates that ensemble methods substantially outperform single‑tree models for 

smartphone‑based crowd‑activity recognition. The Random Forest classifier achieved a 98.16% 

accuracy, improving upon the Decision Tree’s 95% by more than three points; its macro‑averaged 

precision, recall, and F1‑score all exceeded 98%, compared to roughly 94% for the DTC. Confusion 

matrices show that RFC dramatically reduces both false positives and false negatives, yielding 

near‑perfect Negative Predictive Values across all six activity classes. ROC analysis further illustrates 

the RFC’s tighter trade-off between true and false positive rates. The GUI effectively abstracts away 

coding details, enabling domain experts to upload raw CSVs, visualize class distributions, train both 

models, inspect detailed metrics, and perform live predictions—all with a few clicks. This 

accessibility paves the way for scalable deployment in real‑world crowd‑monitoring scenarios. 
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